Publications

generated by bibbase.org
  2023 (5)
Development of Selective ADAMTS-5 Peptide Substrates to Monitor Proteinase Activity. Fowkes, M., M.; Troeberg, L.; Brennan, P., E.; Vincent, T., L.; Meldal, M.; and Lim, N., H. Journal of Medicinal Chemistry, 66(5): 3522-3539. 3 2023.
Development of Selective ADAMTS-5 Peptide Substrates to Monitor Proteinase Activity [pdf]Paper   Development of Selective ADAMTS-5 Peptide Substrates to Monitor Proteinase Activity [link]Website   doi   link   bibtex   abstract  
The X-linked histone demethylases KDM5C and KDM6A as regulators of T cell-driven autoimmunity in the central nervous system. Fazazi, M., R.; Ruda, G., F.; Brennan, P., E.; and Rangachari, M. Brain research bulletin, 202: 110748. 10 2023.
doi   link   bibtex   abstract  
Open drug discovery in Alzheimer's disease. Axtman, A., D.; Brennan, P., E.; Frappier-Brinton, T.; Betarbet, R.; Carter, G., W.; Fu, H.; Gileadi, O.; Greenwood, A., K.; Leal, K.; Longo, F., M.; Mangravite, L., M.; Edwards, A., M.; Levey, A., I.; and Center, E., T. Alzheimer's \& dementia (New York, N. Y.), 9(2): e12394. 4 2023.
doi   link   bibtex   abstract  
Discovery and Development Strategies for SARS-CoV-2 NSP3 Macrodomain Inhibitors. Schuller, M.; Zarganes-Tzitzikas, T.; Bennett, J.; De Cesco, S.; Fearon, D.; von Delft, F.; Fedorov, O.; Brennan, P., E.; and Ahel, I. Pathogens (Basel, Switzerland), 12(2): 324. 2 2023.
doi   link   bibtex   abstract  
Structural premise of selective deubiquitinase USP30 inhibition by small-molecule benzosulfonamides. O'Brien, D., P.; Jones, H., B., L.; Guenther, F.; Murphy, E., J.; England, K., S.; Vendrell, I.; Anderson, M.; Brennan, P., E.; Davis, J., B.; Pinto-Fernández, A.; Turnbull, A., P.; and Kessler, B., M. Molecular \& Cellular Proteomics, 22(8). 6 2023.
doi   link   bibtex   abstract  
  2022 (7)
Kalirin as a Novel Treatment Target for Cognitive Dysfunction in Schizophrenia. Mould, A., W.; Al-Juffali, N.; von Delft, A.; Brennan, P., E.; and Tunbridge, E., M. CNS drugs, 36(1): 1-16. 1 2022.
doi   link   bibtex   abstract  
Covalent fragment-based ligand screening approaches for identification of novel ubiquitin proteasome system modulators. Rothweiler, E., M.; Brennan, P., E.; and Huber, K., V. Biological Chemistry, 403(4): 391-402. 2 2022.
doi   link   bibtex   abstract  
Imaging articular cartilage in osteoarthritis using targeted peptide radiocontrast agents. Fowkes, M., M.; Das Neves Borges, P.; Cacho-Nerin, F.; Brennan, P., E.; Vincent, T., L.; and Lim, N., H. PloS one, 17(5): e0268223. 1 2022.
doi   link   bibtex   abstract  
Novel Starting Points for Human Glycolate Oxidase Inhibitors, Revealed by Crystallography-Based Fragment Screening. Mackinnon, S., R.; Bezerra, G., A.; Krojer, T.; Szommer, T.; von Delft, F.; Brennan, P., E.; and Yue, W., W. Frontiers in Chemistry, 10: 844598. 5 2022.
Novel Starting Points for Human Glycolate Oxidase Inhibitors, Revealed by Crystallography-Based Fragment Screening [link]Website   doi   link   bibtex   abstract  
Synthesis of meta-substituted arene bioisosteres from [3.1.1]propellane. Frank, N.; Nugent, J.; Shire, B., R.; Pickford, H., D.; Rabe, P.; Sterling, A., J.; Zarganes-Tzitzikas, T.; Grimes, T.; Thompson, A., L.; Smith, R., C.; Schofield, C., J.; Brennan, P., E.; Duarte, F.; and Anderson, E., A. Nature 2022 611:7937, 611(7937): 721-726. 9 2022.
Synthesis of meta-substituted arene bioisosteres from [3.1.1]propellane [pdf]Paper   Synthesis of meta-substituted arene bioisosteres from [3.1.1]propellane [link]Website   doi   link   bibtex   abstract  
Imaging articular cartilage in osteoarthritis using targeted peptide radiocontrast agents. Fowkes, M., M.; Borges, P., D., N.; Cacho-Nerin, F.; Brennan, P., E.; Vincent, T., L.; and Lim, N., H. PLOS ONE, 17(5): e0268223. 5 2022.
Imaging articular cartilage in osteoarthritis using targeted peptide radiocontrast agents [pdf]Paper   Imaging articular cartilage in osteoarthritis using targeted peptide radiocontrast agents [link]Website   doi   link   bibtex   abstract  
Novel Starting Points for Human Glycolate Oxidase Inhibitors, Revealed by Crystallography-Based Fragment Screening. Mackinnon, S., R.; Bezerra, G., A.; Krojer, T.; Szommer, T.; von Delft, F.; Brennan, P., E.; and Yue, W., W. Frontiers in Chemistry, 10: 345. 5 2022.
doi   link   bibtex   abstract  
  2021 (9)
Male sex chromosomal complement exacerbates the pathogenicity of Th17 cells in a chronic model of central nervous system autoimmunity. Doss, P.; Umair, M.; Baillargeon, J.; Fazazi, R.; Fudge, N.; Akbar, I.; Yeola, A., P.; Williams, J., B.; Leclercq, M.; Joly-Beauparlant, C.; Beauchemin, P.; Ruda, G., F.; Alpaugh, M.; Anderson, A., C.; Brennan, P., E.; Droit, A.; Lassmann, H.; Moore, C., S.; and Rangachari, M. Cell reports, 34(10): 108833. 3 2021.
doi   link   bibtex   abstract  
Chemogenomics for drug discovery: Clinical molecules from open access chemical probes. Quinlan, R., B.; and Brennan, P., E. RSC Chemical Biology, 2(3): 759-795. 2021.
Chemogenomics for drug discovery: Clinical molecules from open access chemical probes [pdf]Paper   doi   link   bibtex   abstract  
Fragment Screening Reveals Starting Points for Rational Design of Galactokinase 1 Inhibitors to Treat Classic Galactosemia. Mackinnon, S., R.; Krojer, T.; Foster, W., R.; Diaz-Saez, L.; Tang, M.; Huber, K., V., M.; von Delft, F.; Lai, K.; Brennan, P., E.; Arruda Bezerra, G.; and Yue, W., W. ACS chemical biology, 16(4): 586-595. 4 2021.
doi   link   bibtex   abstract  
RHO to the DOCK for GDP disembarking: Structural insights into the DOCK GTPase nucleotide exchange factors. Thompson, A., P.; Bitsina, C.; Gray, J., L.; von Delft, F.; and Brennan, P., E. Journal of Biological Chemistry, 296: 100521. 1 2021.
RHO to the DOCK for GDP disembarking: Structural insights into the DOCK GTPase nucleotide exchange factors [pdf]Paper   RHO to the DOCK for GDP disembarking: Structural insights into the DOCK GTPase nucleotide exchange factors [link]Website   doi   link   bibtex   abstract  
A phenotypic high-content, high-throughput screen identifies inhibitors of NLRP3 inflammasome activation. Nizami, S.; Millar, V.; Arunasalam, K.; Zarganes-Tzitzikas, T.; Brough, D.; Tresadern, G.; Brennan, P., E.; Davis, J., B.; Ebner, D.; and Di Daniel, E. Scientific reports, 11(1): 15319. 7 2021.
doi   link   bibtex   abstract  
The structural basis of fatty acid elongation by the ELOVL elongases. Nie, L.; Pascoa, T., C.; Pike, A., C., W.; Bushell, S., R.; Quigley, A.; Ruda, G., F.; Chu, A.; Cole, V.; Speedman, D.; Moreira, T.; Shrestha, L.; Mukhopadhyay, S., M., M.; Burgess-Brown, N., A.; Love, J., D.; Brennan, P., E.; and Carpenter, E., P. Nature Structural and Molecular Biology, 28(6): 512-520. 6 2021.
doi   link   bibtex   abstract  
Combinatorial library screening for selective ADAMTS-5 peptide substrates to study aggrecanase activity. Fowkes, M., M.; Vincent, T., L.; Brennan, P., E.; Meldal, M.; and Lim, N., H. In Int J Exp Pathol, volume 102, pages A11--A12, 8 2021.
Combinatorial library screening for selective ADAMTS-5 peptide substrates to study aggrecanase activity [link]Website   link   bibtex  
Target 2035-update on the quest for a probe for every protein. Al Chawaf, A.; Bullock, A., N.; Carter, A., J.; Chaikuad, A.; Chaineau, M.; Ciulli, A.; Collins, I.; Dreher, J.; Drewry, D.; Edfeldt, K.; Edwards, A., M.; Egner, U.; Frye, S., V.; Fuchs, S., M.; Hall, M., D.; Hartung, I., V.; Hillisch, A.; Hitchcock, S., H.; Kannan, N.; Kiefer, J., R.; Knapp, S.; Morgan, M., R.; Rosenberg, S., H.; Saikatendu, K., S.; and Schapira, M. RSC Medicinal Chemistry, 13(1): 13-21. 12 2021.
doi   link   bibtex   abstract  
N-substituted-3,4-(fused 5-ring)-5-phenyl-pyrrolidine-2-one compounds as inhibitors of isoQC and/or QC enzyme. Evers, B.; and Brennan, P., E. 1 2021.
link   bibtex   abstract  
  2020 (7)
Targeting the Small GTPase Superfamily through Their Regulatory Proteins. Gray, J., L.; von Delft, F.; and Brennan, P., E. 3 2020.
Targeting the Small GTPase Superfamily through Their Regulatory Proteins [pdf]Paper   Targeting the Small GTPase Superfamily through Their Regulatory Proteins [link]Website   doi   link   bibtex   abstract   15 downloads  
TargetDB: A target information aggregation tool and tractability predictor. De Cesco, S., P.; Davis, J., B.; and Brennan, P., E. bioRxiv,2020.04.21.052878. 1 2020.
TargetDB: A target information aggregation tool and tractability predictor [link]Website   doi   link   bibtex   abstract   5 downloads  
TargetDB: A target information aggregation tool and tractability predictor. De Cesco, S.; Davis, J., B.; and Brennan, P., E. PLOS ONE, 15(9): e0232644. 9 2020.
TargetDB: A target information aggregation tool and tractability predictor [pdf]Paper   TargetDB: A target information aggregation tool and tractability predictor [link]Website   doi   link   bibtex   abstract   5 downloads  
Large eQTL meta-analysis reveals differing patterns between cerebral cortical and cerebellar brain regions. Sieberts, S.; Perumal, T.; Carrasquillo, M.; Allen, M.; Reddy, J.; Hoffman, G.; Dang, K.; Calley, J.; Ebert, P.; Eddy, J.; Wang, X.; Greenwood, A.; Mostafavi, S.; Akbarian, S.; Bendl, J.; Breen, M.; Brennand, K.; Brown, L.; Browne, A.; Buxbaum, J.; Charney, A.; Chess, A.; Couto, L.; Crawford, G.; Devillers, O.; Devlin, B.; Dobbyn, A.; Domenici, E.; Filosi, M.; Flatow, E.; Francoeur, N.; Fullard, J.; Gil, S.; Girdhar, K.; Gulyás-Kovács, A.; Gur, R.; Hahn, C.; Haroutunian, V.; Hauberg, M.; Huckins, L.; Jacobov, R.; Jiang, Y.; Johnson, J.; Kassim, B.; Kim, Y.; Klei, L.; Kramer, R.; Lauria, M.; Lehner, T.; Lewis, D.; Lipska, B.; Montgomery, K.; Park, R.; Rosenbluh, C.; Roussos, P.; Ruderfer, D.; Senthil, G.; Shah, H.; Sloofman, L.; Song, L.; Stahl, E.; Sullivan, P.; Visintainer, R.; Wang, J.; Wang, Y.; Wiseman, J.; Xia, E.; Zhang, W.; Zharovsky, E.; Addis, L.; Addo, S.; Airey, D.; Arnold, M.; Bennett, D.; Bi, Y.; Biber, K.; Blach, C.; Bradhsaw, E.; Brennan, P.; Canet-Aviles, R.; Cao, S.; Cavalla, A.; Chae, Y.; Chen, W.; Cheng, J.; Collier, D.; Dage, J.; Dammer, E.; Davis, J.; Davis, J.; Drake, D.; Duong, D.; Eastwood, B.; Ehrlich, M.; Ellingson, B.; Engelmann, B.; Esmaeelinieh, S.; Felsky, D.; Funk, C.; Gaiteri, C.; Gandy, S.; Gao, F.; Gileadi, O.; Golde, T.; Grosskurth, S.; Gupta, R.; Gutteridge, A.; Haroutunian, V.; Hooli, B.; Humphryes-Kirilov, N.; Iijima, K.; James, C.; Jung, P.; Kaddurah-Daouk, R.; Kastenmuller, G.; Klein, H.; Kummer, M.; Lacor, P.; Lah, J.; Laing, E.; Levey, A.; Li, Y.; Lipsky, S.; Liu, Y.; Liu, J.; Liu, Z.; Louie, G.; Lu, T.; Ma, Y.; Matsuoka, Y.; Menon, V.; Miller, B.; Misko, T.; Mollon, J.; Montgomery, K.; Mukherjee, S.; Noggle, S.; Pao, P.; Pearce, T.; Pearson, N.; Penny, M.; Petyuk, V.; Price, N.; Quarless, D.; Ravikumar, B.; Ried, J.; Ruble, C.; Runz, H.; Saykin, A.; Schadt, E.; Scherschel, J.; Seyfried, N.; Shulman, J.; Snyder, P.; Soares, H.; Srivastava, G.; Stockmann, H.; Taga, M.; Tasaki, S.; Tenenbaum, J.; Tsai, L.; Vasanthakumar, A.; Wachter, A.; Wang, Y.; Wang, H.; Wang, M.; Whelan, C.; White, C.; Woo, K.; Wren, P.; Wu, J.; Xi, H.; Yankner, B.; Younkin, S.; Yu, L.; Zavodszky, M.; Zhang, W.; Zhang, G.; Zhang, B.; Zhu, J.; Omberg, L.; Peters, M.; Logsdon, B.; De Jager, P.; Ertekin-Taner, N.; and Mangravite, L. Scientific Data, 7(1). 2020.
doi   link   bibtex   abstract  
Inhibition of the SUV4-20 H1 histone methyltransferase increases frataxin expression in friedreich’s ataxia patient cells. Vilema-Enríquez, G.; Quinlan, R.; Kilfeather, P.; Mazzone, R.; Saqlain, S.; del Molino del Barrio, I.; Donato, A.; Corda, G.; Li, F.; Vedadi, M.; Németh, A., H.; Brennan, P., E.; and Wade-Martins, R. Journal of Biological Chemistry, 295(52): 17973-17985. 10 2020.
Inhibition of the SUV4-20 H1 histone methyltransferase increases frataxin expression in friedreich’s ataxia patient cells [link]Website   doi   link   bibtex   abstract   1 download  
Inhibition of histone H3K27 demethylases inactivates brachyury (TBXT) and promotes chordoma cell death. Cottone, L.; Cribbs, A.; Khandelwal, G.; Wells, G.; Ligammari, L.; Philpott, M.; Tumber, A.; Lombard, P.; Hookway, E.; Szommer, T.; Johansson, C.; Brennan, P.; Pillay, N.; Jenner, R.; Oppermann, U.; and Flanagan, A. Cancer Research, 80(20). 2020.
doi   link   bibtex   abstract  
Deliberately Losing Control of C−H Activation Processes in the Design of Small‐Molecule‐Fragment Arrays Targeting Peroxisomal Metabolism. Khan Tareque, R.; Hassell‐Hart, S.; Krojer, T.; Bradley, A.; Velupillai, S.; Talon, R.; Fairhead, M.; Day, I., J.; Bala, K.; Felix, R.; Kemmitt, P., D.; Brennan, P.; Delft, F.; Díaz Sáez, L.; Huber, K.; and Spencer, J. ChemMedChem, 15(24): 2513-2520. 12 2020.
Deliberately Losing Control of C−H Activation Processes in the Design of Small‐Molecule‐Fragment Arrays Targeting Peroxisomal Metabolism [link]Website   doi   link   bibtex   abstract  
  2019 (13)
Design, Synthesis and Characterization of Covalent KDM5 Inhibitors. Vazquez-Rodriguez, S.; Wright, M.; Rogers, C., M.; Cribbs, A., P.; Velupillai, S.; Philpott, M.; Lee, H.; Dunford, J., E.; Huber, K., V., M.; Robers, M., B.; Vasta, J., D.; Thezenas, M.; Bonham, S.; Kessler, B.; Bennett, J.; Fedorov, O.; Raynaud, F.; Donovan, A.; Blagg, J.; Bavetsias, V.; Oppermann, U.; Bountra, C.; Kawamura, A.; and Brennan, P., E. Angewandte Chemie International Edition, 58(2): 515-519. 1 2019.
Design, Synthesis and Characterization of Covalent KDM5 Inhibitors [pdf]Paper   Design, Synthesis and Characterization of Covalent KDM5 Inhibitors [link]Website   doi   link   bibtex   13 downloads  
An Activity-Based Probe Targeting Non-Catalytic, Highly Conserved Amino Acid Residues within Bromodomains. D'Ascenzio, M.; Pugh, K., M.; Konietzny, R.; Berridge, G.; Tallant, C.; Hashem, S.; Monteiro, O.; Thomas, J., R.; Schirle, M.; Knapp, S.; Marsden, B.; Fedorov, O.; Bountra, C.; Kessler, B., M.; and Brennan, P., E. Angewandte Chemie International Edition, 58(4): 1007-1012. 2019.
An Activity-Based Probe Targeting Non-Catalytic, Highly Conserved Amino Acid Residues within Bromodomains [link]Website   doi   link   bibtex   3 downloads  
Chemical Probes. Donner, A.; King, H.; Brennan, P., E.; Moustakim, M.; and Zuercher, W., J. Epigenetic Drug Discovery,133-152. 2019.
link   bibtex  
Discovery of Pyrrolo[3,2- d]pyrimidin-4-one Derivatives as a New Class of Potent and Cell-Active Inhibitors of P300/CBP-Associated Factor Bromodomain. Huang, L.; Li, H.; Li, L.; Niu, L.; Seupel, R.; Wu, C.; Cheng, W.; Chen, C.; Ding, B.; Brennan, P., E.; and Yang, S. Journal of Medicinal Chemistry, 62(9): 4526-4542. 4 2019.
Discovery of Pyrrolo[3,2- d]pyrimidin-4-one Derivatives as a New Class of Potent and Cell-Active Inhibitors of P300/CBP-Associated Factor Bromodomain [pdf]Paper   Discovery of Pyrrolo[3,2- d]pyrimidin-4-one Derivatives as a New Class of Potent and Cell-Active Inhibitors of P300/CBP-Associated Factor Bromodomain [link]Website   doi   link   bibtex   abstract   1 download  
ALK2 inhibitors display beneficial effects in preclinical models of ACVR1 mutant diffuse intrinsic pontine glioma. Carvalho, D.; Taylor, K., R.; Olaciregui, N., G.; Molinari, V.; Clarke, M.; Mackay, A.; Ruddle, R.; Henley, A.; Valenti, M.; Hayes, A.; Brandon, A., D., H.; Eccles, S., A.; Raynaud, F.; Boudhar, A.; Monje, M.; Popov, S.; Moore, A., S.; Mora, J.; Cruz, O.; Vinci, M.; Brennan, P., E.; Bullock, A., N.; Carcaboso, A., M.; and Jones, C. Communications Biology, 2(1): 156. 12 2019.
ALK2 inhibitors display beneficial effects in preclinical models of ACVR1 mutant diffuse intrinsic pontine glioma [pdf]Paper   ALK2 inhibitors display beneficial effects in preclinical models of ACVR1 mutant diffuse intrinsic pontine glioma [link]Website   doi   link   bibtex   abstract  
A chemical toolbox for the study of bromodomains and epigenetic signaling. Wu, Q.; Heidenreich, D.; Zhou, S.; Ackloo, S.; Krämer, A.; Nakka, K.; Lima-Fernandes, E.; Deblois, G.; Duan, S.; Vellanki, R., N.; Li, F.; Vedadi, M.; Dilworth, J.; Lupien, M.; Brennan, P., E.; Arrowsmith, C., H.; Müller, S.; Fedorov, O.; Filippakopoulos, P.; and Knapp, S. Nature Communications, 10(1): 1915. 12 2019.
A chemical toolbox for the study of bromodomains and epigenetic signaling [pdf]Paper   A chemical toolbox for the study of bromodomains and epigenetic signaling [link]Website   doi   link   bibtex   abstract   3 downloads  
Rapid Covalent-Probe Discovery by Electrophile-Fragment Screening. Resnick, E.; Bradley, A.; Gan, J.; Douangamath, A.; Krojer, T.; Sethi, R.; Geurink, P., P.; Aimon, A.; Amitai, G.; Bellini, D.; Bennett, J.; Fairhead, M.; Fedorov, O.; Gabizon, R.; Gan, J.; Guo, J.; Plotnikov, A.; Reznik, N.; Ruda, G., F.; Díaz-Sáez, L.; Straub, V., M.; Szommer, T.; Velupillai, S.; Zaidman, D.; Zhang, Y.; Coker, A., R.; Dowson, C., G.; Barr, H., M.; Wang, C.; Huber, K., V.; Brennan, P., E.; Ovaa, H.; von Delft, F.; and London, N. Journal of the American Chemical Society, 141(22): 8951-8968. 6 2019.
Rapid Covalent-Probe Discovery by Electrophile-Fragment Screening [pdf]Paper   Rapid Covalent-Probe Discovery by Electrophile-Fragment Screening [link]Website   doi   link   bibtex   abstract   7 downloads  
A Chemical Probe for Tudor Domain Protein Spindlin1 to Investigate Chromatin Function. Fagan, V.; Johansson, C.; Gileadi, C.; Monteiro, O.; Dunford, J., E.; Nibhani, R.; Philpott, M.; Malzahn, J.; Wells, G.; Faram, R.; Cribbs, A., P.; Halidi, N.; Li, F.; Chau, I.; Greschik, H.; Velupillai, S.; Allali-Hassani, A.; Bennett, J.; Christott, T.; Giroud, C.; Lewis, A., M.; Huber, K., V., M.; Athanasou, N.; Bountra, C.; Jung, M.; Schüle, R.; Vedadi, M.; Arrowsmith, C.; Xiong, Y.; Jin, J.; Fedorov, O.; Farnie, G.; Brennan, P., E.; and Oppermann, U. Journal of Medicinal Chemistry, 62(20): 9008-9025. 10 2019.
A Chemical Probe for Tudor Domain Protein Spindlin1 to Investigate Chromatin Function [link]Website   doi   link   bibtex   abstract  
A genetics-led approach defines the drug target landscape of 30 immune-related traits. Fang, H.; De Wolf, H.; Knezevic, B.; Burnham, K.; Osgood, J.; Sekine, T.; Berg, L.; Göhlmann, H., W.; Sanniti, A.; Lledó Lara, A.; Kasela, S.; Wegner, J., K.; O’Callaghan, C., A.; Bountra, C.; Bowness, P.; Milani, L.; Sundström, Y.; Sundström, M.; Knight, J.; De Cesco, S.; Handunnetthi, L.; McCann, F., E.; Chen, L.; Brennan, P., E.; and Peeters, P., J. Nature Genetics, 51: 1082-1091. 6 2019.
doi   link   bibtex   abstract  
Discovery of a Potent and Selective Fragment-like Inhibitor of Methyllysine Reader Protein Spindlin 1 (SPIN1). Xiong, Y.; Greschik, H.; Johansson, C.; Seifert, L.; Bacher, J.; Park, K., S.; Babault, N.; Martini, M.; Fagan, V.; Li, F.; Chau, I.; Christott, T.; Dilworth, D.; Barsyte-Lovejoy, D.; Vedadi, M.; Arrowsmith, C., H.; Brennan, P.; Fedorov, O.; Jung, M.; Farnie, G.; Liu, J.; Oppermann, U.; Schüle, R.; and Jin, J. Journal of Medicinal Chemistry, 62(20): 8996-9007. 7 2019.
doi   link   bibtex   abstract  
Synthesis and biological investigation of (+)-JD1, an organometallic BET bromodomain inhibitor. Hassell-Hart, S.; Runcie, A.; Krojer, T.; Doyle, J.; Lineham, E.; Ocasio, C., A.; Neto, B., A., D.; Fedorov, O.; Marsh, G.; Maple, H.; Felix, R.; Ciulli, A.; Banks, R.; Picaud, S.; Filippakopoulos, P.; von Delft, F.; Brennan, P.; Stewart, H., J., S.; Chevassut, T., J.; Walker, M.; Austin, C.; Morley, S.; and Spencer, J. Organometallics. 12 2019.
doi   link   bibtex   abstract   1 download  
C8-substituted pyrido[3,4-d]pyrimidin-4(3H)-ones: Studies towards the identification of potent, cell penetrant Jumonji C domain containing histone lysine demethylase 4 subfamily (KDM4) inhibitors, compound profiling in cell-based target engagement assays. Bavetsias, V.; Raynaud, F., I.; Fedorov, O.; Le Bihan, Y.; Lanigan, R., M.; Atrash, B.; Velupillai, S.; Malcolm, A., G.; England, K., S.; Ruda, G.; Mok, N., Y.; Tumber, A.; Tomlin, K.; Saville, H.; Shehu, E.; McAndrew, C.; Carmichael, L.; Bennett, J., M.; Jeganathan, F.; Eve, P.; Donovan, A.; Hayes, A.; and Wood, F. European Journal of Medicinal Chemistry, 177: 316-337. 5 2019.
doi   link   bibtex   abstract  
Structural Insights into Interaction Mechanisms of Alternative Piperazine-urea YEATS Domain Binders in MLLT1. Ni, X.; Heidenreich, D.; Christott, T.; Bennett, J.; Moustakim, M.; Brennan, P.; Fedorov, O.; Knapp, S.; and Chaikuad, A. ACS Medicinal Chemistry Letters, 10(12). 2019.
doi   link   bibtex   abstract  
  2018 (8)
Identifying Small-Molecule Binding Sites for Epigenetic Proteins at Domain-Domain Interfaces. Bowkett, D.; Talon, R.; Tallant, C.; Schofield, C.; vonDelft, F.; Knapp, S.; Bruton, G.; and Brennan, P., E. ChemMedChem, 13(10): 1051-1057. 2018.
doi   link   bibtex   abstract  
Discovery of a novel allosteric inhibitor scaffold for polyadenosine-diphosphate-ribose polymerase 14 (PARP14) macrodomain 2. Moustakim, M.; Riedel, K.; Schuller, M.; Gehring, A., P.; Monteiro, O., P.; Martin, S., P.; Fedorov, O.; Heer, J.; Dixon, D., J.; Elkins, J., M.; Knapp, S.; Bracher, F.; and Brennan, P., E. Bioorganic and Medicinal Chemistry, 26(11): 2965-2972. 2018.
doi   link   bibtex   abstract  
Mild, calcium catalysed Beckmann rearrangements. Kiely-Collins, H., J.; Sechi, I.; Brennan, P., E.; and McLaughlin, M., G. Chemical Communications, 54(6): 654-657. 1 2018.
doi   link   bibtex   abstract  
Halogen-Aromatic πInteractions Modulate Inhibitor Residence Times. Heroven, C.; Georgi, V.; Ganotra, G., K.; Brennan, P.; Wolfreys, F.; Wade, R., C.; Fernández-Montalván, A., E.; Chaikuad, A.; and Knapp, S. Angewandte Chemie - International Edition, 57(24): 7220-7224. 3 2018.
doi   link   bibtex   abstract  
Bench-Stable Transfer Reagent Facilitates the Generation of Trifluoromethyl-sulfonimidamides. Wright, M.; Martínez-Lamenca, C.; Leenaerts, J., E.; Brennan, P., E.; Trabanco, A., A.; and Oehlrich, D. The Journal of Organic Chemistry. 6 2018.
Bench-Stable Transfer Reagent Facilitates the Generation of Trifluoromethyl-sulfonimidamides [link]Website   doi   link   bibtex  
A structure-based approach towards identification of inhibitory fragments for eleven-nineteen-leukemia protein (ENL). Heidenreich, D.; Moustakim, M.; Schmidt, J.; Merk, D.; Brennan, P., E.; Fedorov, O.; Chaikuad, A.; and Knapp, S. Journal of Medicinal Chemistry, 61(23): acs.jmedchem.8b01457. 12 2018.
A structure-based approach towards identification of inhibitory fragments for eleven-nineteen-leukemia protein (ENL) [pdf]Paper   A structure-based approach towards identification of inhibitory fragments for eleven-nineteen-leukemia protein (ENL) [link]Website   doi   link   bibtex   abstract  
Discovery of an MLLT1/3 YEATS Domain Chemical Probe. Moustakim, M.; Christott, T.; Monteiro, O., P.; Bennett, J.; Giroud, C.; Ward, J.; Rogers, C., M.; Smith, P.; Panagakou, I.; Díaz-Sáez, L.; Felce, S., L.; Gamble, V.; Gileadi, C.; Halidi, N.; Heidenreich, D.; Chaikuad, A.; Knapp, S.; Huber, K., V., M.; Farnie, G.; Heer, J.; Manevski, N.; Poda, G.; Al-awar, R.; Dixon, D., J.; Brennan, P., E.; and Fedorov, O. Angewandte Chemie - International Edition, 57(50): 16302-16307. 10 2018.
Discovery of an MLLT1/3 YEATS Domain Chemical Probe [pdf]Paper   Discovery of an MLLT1/3 YEATS Domain Chemical Probe [link]Website   doi   link   bibtex   abstract  
Identifying small molecule binding sites for epigenetic proteins at domain-domain interfaces. Bowkett, D.; Talon, R.; Tallant, C.; Schofield, C.; von Delft, F.; Knapp, S.; Bruton, G.; and Brennan, P. 2018.
doi   link   bibtex   abstract  
  2017 (12)
Discovery of a PCAF Bromodomain Chemical Probe. Moustakim, M.; Clark, P., G.; Trulli, L.; Fuentes de Arriba, A., L.; Ehebauer, M., T.; Chaikuad, A.; Murphy, E., J.; Mendez-Johnson, J.; Daniels, D.; Hou, C., F., D.; Lin, Y., H.; Walker, J., R.; Hui, R.; Yang, H.; Dorrell, L.; Rogers, C., M.; Monteiro, O., P.; Fedorov, O.; Huber, K., V.; Knapp, S.; Heer, J.; Dixon, D., J.; and Brennan, P., E. Angewandte Chemie - International Edition, 56(3): 827-831. 1 2017.
Discovery of a PCAF Bromodomain Chemical Probe [pdf]Paper   Discovery of a PCAF Bromodomain Chemical Probe [link]Website   doi   link   bibtex   abstract  
Assessing histone demethylase inhibitors in cells: Lessons learned. Hatch, S., B.; Yapp, C.; Montenegro, R., C.; Savitsky, P.; Gamble, V.; Tumber, A.; Ruda, G., F.; Bavetsias, V.; Fedorov, O.; Atrash, B.; Raynaud, F.; Lanigan, R.; Carmichael, L.; Tomlin, K.; Burke, R.; Westaway, S., M.; Brown, J., A.; Prinjha, R., K.; Martinez, E., D.; Oppermann, U.; Schofield, C., J.; Bountra, C.; Kawamura, A.; Blagg, J.; Brennan, P., E.; Rossanese, O.; and Müller, S. Epigenetics and Chromatin, 10(1): 9. 12 2017.
Assessing histone demethylase inhibitors in cells: Lessons learned [link]Website   doi   link   bibtex   abstract   1 download  
Structure-Based Design of Highly Selective Inhibitors of the CREB Binding Protein Bromodomain. Denny, R., A.; Flick, A., C.; Coe, J.; Langille, J.; Basak, A.; Liu, S.; Stock, I.; Sahasrabudhe, P.; Bonin, P.; Hay, D., A.; Brennan, P., E.; Pletcher, M.; Jones, L., H.; and Chekler, E., L. Journal of Medicinal Chemistry, 60(13): 5349-5363. 5 2017.
Structure-Based Design of Highly Selective Inhibitors of the CREB Binding Protein Bromodomain [link]Website   doi   link   bibtex   abstract   1 download  
Highly selective inhibition of histone demethylases by de novo macrocyclic peptides. Kawamura, A.; Münzel, M.; Kojima, T.; Yapp, C.; Bhushan, B.; Goto, Y.; Tumber, A.; Katoh, T.; King, O., N.; Passioura, T.; Walport, L., J.; Hatch, S., B.; Madden, S.; Müller, S.; Brennan, P., E.; Chowdhury, R.; Hopkinson, R., J.; Suga, H.; and Schofield, C., J. Nature Communications, 8: 14773. 4 2017.
Highly selective inhibition of histone demethylases by de novo macrocyclic peptides [link]Website   doi   link   bibtex   abstract  
Potent and Selective KDM5 Inhibitor Stops Cellular Demethylation of H3K4me3 at Transcription Start Sites and Proliferation of MM1S Myeloma Cells. Tumber, A.; Nuzzi, A.; Hookway, E., S.; Hatch, S., B.; Velupillai, S.; Johansson, C.; Kawamura, A.; Savitsky, P.; Yapp, C.; Szykowska, A.; Wu, N.; Bountra, C.; Strain-Damerell, C.; Burgess-Brown, N., A.; Ruda, G., F.; Fedorov, O.; Munro, S.; England, K., S.; Nowak, R., P.; Schofield, C., J.; La Thangue, N., B.; Pawlyn, C.; Davies, F.; Morgan, G.; Athanasou, N.; Müller, S.; Oppermann, U.; and Brennan, P., E. Cell Chemical Biology, 24(3): 371-380. 3 2017.
Potent and Selective KDM5 Inhibitor Stops Cellular Demethylation of H3K4me3 at Transcription Start Sites and Proliferation of MM1S Myeloma Cells [link]Website   doi   link   bibtex   abstract  
Design of a biased potent small molecule inhibitor of the bromodomain and PHD finger-containing (brpf) proteins suitable for cellular and in vivo studies. Igoe, N.; Bayle, E., D.; Fedorov, O.; Tallant, C.; Savitsky, P.; Rogers, C.; Owen, D., R.; Deb, G.; Somervaille, T., C.; Andrews, D., M.; Jones, N.; Cheasty, A.; Ryder, H.; Brennan, P., E.; Müller, S.; Knapp, S.; and Fish, P., V. Journal of Medicinal Chemistry, 60(2): 668-680. 1 2017.
Design of a biased potent small molecule inhibitor of the bromodomain and PHD finger-containing (brpf) proteins suitable for cellular and in vivo studies [link]Website   doi   link   bibtex   abstract  
BRD3 and BRD4 BET Bromodomain Proteins Differentially Regulate Skeletal Myogenesis. Roberts, T., C.; Etxaniz, U.; Dall'agnese, A.; Wu, S., Y.; Chiang, C., M.; Brennan, P., E.; Wood, M., J.; and Puri, P., L. Scientific Reports, 7(1): 6153. 2017.
doi   link   bibtex   abstract  
The SGC beyond structural genomics: redefining the role of 3D structures by coupling genomic stratification with fragment-based discovery. Bradley, A., R.; Echalier, A.; Fairhead, M.; Strain-Damerell, C.; Brennan, P.; Bullock, A., N.; Burgess-Brown, N., A.; Carpenter, E., P.; Gileadi, O.; Marsden, B., D.; Lee, W., H.; Yue, W.; Bountra, C.; and Von Delft, F. Essays in Biochemistry, 61(5): 495-503. 11 2017.
The SGC beyond structural genomics: redefining the role of 3D structures by coupling genomic stratification with fragment-based discovery [pdf]Paper   The SGC beyond structural genomics: redefining the role of 3D structures by coupling genomic stratification with fragment-based discovery [link]Website   doi   link   bibtex   abstract  
Discovery of a Highly Selective Cell-Active Inhibitor of the Histone Lysine Demethylases KDM2/7. Gerken, P., A.; Wolstenhulme, J., R.; Tumber, A.; Hatch, S., B.; Zhang, Y.; Müller, S.; Chandler, S., A.; Mair, B.; Li, F.; Nijman, S., M.; Konietzny, R.; Szommer, T.; Yapp, C.; Fedorov, O.; Benesch, J., L.; Vedadi, M.; Kessler, B., M.; Kawamura, A.; Brennan, P., E.; and Smith, M., D. Angewandte Chemie - International Edition, 56(49): 15555-15559. 12 2017.
Discovery of a Highly Selective Cell-Active Inhibitor of the Histone Lysine Demethylases KDM2/7 [pdf]Paper   Discovery of a Highly Selective Cell-Active Inhibitor of the Histone Lysine Demethylases KDM2/7 [link]Website   doi   link   bibtex   abstract   2 downloads  
Selective Targeting of Bromodomains of the Bromodomain-PHD Fingers Family Impairs Osteoclast Differentiation. Meier, J., C.; Tallant, C.; Fedorov, O.; Witwicka, H.; Hwang, S., Y.; Van Stiphout, R., G.; Lambert, J., P.; Rogers, C.; Yapp, C.; Gerstenberger, B., S.; Fedele, V.; Savitsky, P.; Heidenreich, D.; Daniels, D., L.; Owen, D., R.; Fish, P., V.; Igoe, N., M.; Bayle, E., D.; Haendler, B.; Oppermann, U., C.; Buffa, F.; Brennan, P., E.; Müller, S.; Gingras, A., C.; Odgren, P., R.; Birnbaum, M., J.; and Knapp, S. ACS Chemical Biology, 12(10): 2619-2630. 10 2017.
Selective Targeting of Bromodomains of the Bromodomain-PHD Fingers Family Impairs Osteoclast Differentiation [pdf]Paper   Selective Targeting of Bromodomains of the Bromodomain-PHD Fingers Family Impairs Osteoclast Differentiation [link]Website   doi   link   bibtex   abstract  
Design of a Chemical Probe for the Bromodomain and Plant Homeodomain Finger-Containing (BRPF) Family of Proteins. Igoe, N.; Bayle, E., D.; Tallant, C.; Fedorov, O.; Meier, J., C.; Savitsky, P.; Rogers, C.; Morias, Y.; Scholze, S.; Boyd, H.; Cunoosamy, D.; Andrews, D., M.; Cheasty, A.; Brennan, P., E.; Müller, S.; Knapp, S.; and Fish, P., V. Journal of Medicinal Chemistry, 60(16): 6998-7011. 8 2017.
Design of a Chemical Probe for the Bromodomain and Plant Homeodomain Finger-Containing (BRPF) Family of Proteins [pdf]Paper   Design of a Chemical Probe for the Bromodomain and Plant Homeodomain Finger-Containing (BRPF) Family of Proteins [link]Website   doi   link   bibtex   abstract  
Di-iodotyrosinated peptide imaging of cartilage (DIPIC). Fowkes, M., M.; Borges, P., D., N.; Brennan, P., E.; Vincent, T., L.; and Lim, N., H. In International Journal of Experimental Pathology, volume 98, pages A7-A7, 6 2017.
Di-iodotyrosinated peptide imaging of cartilage (DIPIC) [link]Website   link   bibtex  
  2016 (18)
Discovery of a Chemical Tool Inhibitor Targeting the Bromodomains of TRIM24 and BRPF. Bennett, J.; Fedorov, O.; Tallant, C.; Monteiro, O.; Meier, J.; Gamble, V.; Savitsky, P.; Nunez-Alonso, G., A.; Haendler, B.; Rogers, C.; Brennan, P., E.; Müller, S.; and Knapp, S. Journal of Medicinal Chemistry, 59(4): 1642-1647. 2016.
Discovery of a Chemical Tool Inhibitor Targeting the Bromodomains of TRIM24 and BRPF [link]Website   doi   link   bibtex   abstract  
Structure-Based Identification of Inhibitory Fragments Targeting the p300/CBP-Associated Factor Bromodomain. Chaikuad, A.; Lang, S.; Brennan, P., E.; Temperini, C.; Fedorov, O.; Hollander, J.; Nachane, R.; Abell, C.; Müller, S.; Siegal, G.; and Knapp, S. Journal of Medicinal Chemistry, 59(4): 1648-1653. 1 2016.
Structure-Based Identification of Inhibitory Fragments Targeting the p300/CBP-Associated Factor Bromodomain [pdf]Paper   Structure-Based Identification of Inhibitory Fragments Targeting the p300/CBP-Associated Factor Bromodomain [link]Website   doi   link   bibtex   abstract  
A poised fragment library enables rapid synthetic expansion yielding the first reported inhibitors of PHIP(2), an atypical bromodomain. Cox, O., B.; Krojer, T.; Collins, P.; Monteiro, O.; Talon, R.; Bradley, A.; Fedorov, O.; Amin, J.; Marsden, B., D.; Spencer, J.; Von Delft, F.; and Brennan, P., E. Chemical Science, 7(3): 2322-2330. 2016.
A poised fragment library enables rapid synthetic expansion yielding the first reported inhibitors of PHIP(2), an atypical bromodomain [pdf]Paper   A poised fragment library enables rapid synthetic expansion yielding the first reported inhibitors of PHIP(2), an atypical bromodomain [link]Website   doi   link   bibtex   abstract  
8-Substituted Pyrido[3,4-d]pyrimidin-4(3H)-one Derivatives As Potent, Cell Permeable, KDM4 (JMJD2) and KDM5 (JARID1) Histone Lysine Demethylase Inhibitors. Bavetsias, V.; Lanigan, R., M.; Ruda, G., F.; Atrash, B.; McLaughlin, M., G.; Tumber, A.; Mok, N., Y.; Le Bihan, Y., V.; Dempster, S.; Boxall, K., J.; Jeganathan, F.; Hatch, S., B.; Savitsky, P.; Velupillai, S.; Krojer, T.; England, K., S.; Sejberg, J.; Thai, C.; Donovan, A.; Pal, A.; Scozzafava, G.; Bennett, J., M.; Kawamura, A.; Johansson, C.; Szykowska, A.; Gileadi, C.; Burgess-Brown, N., A.; Von Delft, F.; Oppermann, U.; Walters, Z.; Shipley, J.; Raynaud, F., I.; Westaway, S., M.; Prinjha, R., K.; Fedorov, O.; Burke, R.; Schofield, C., J.; Westwood, I., M.; Bountra, C.; Müller, S.; Van Montfort, R., L.; Brennan, P., E.; and Blagg, J. Journal of Medicinal Chemistry, 59(4): 1388-1409. 1 2016.
8-Substituted Pyrido[3,4-d]pyrimidin-4(3H)-one Derivatives As Potent, Cell Permeable, KDM4 (JMJD2) and KDM5 (JARID1) Histone Lysine Demethylase Inhibitors [pdf]Paper   8-Substituted Pyrido[3,4-d]pyrimidin-4(3H)-one Derivatives As Potent, Cell Permeable, KDM4 (JMJD2) and KDM5 (JARID1) Histone Lysine Demethylase Inhibitors [link]Website   doi   link   bibtex   abstract  
Identification and Development of 2,3-Dihydropyrrolo[1,2-a]quinazolin-5(1H)-one Inhibitors Targeting Bromodomains within the Switch/Sucrose Nonfermenting Complex. Sutherell, C., L.; Tallant, C.; Monteiro, O., P.; Yapp, C.; Fuchs, J., E.; Fedorov, O.; Siejka, P.; Müller, S.; Knapp, S.; Brenton, J., D.; Brennan, P., E.; and Ley, S., V. Journal of Medicinal Chemistry, 59(10): 5095-5101. 2016.
Identification and Development of 2,3-Dihydropyrrolo[1,2-a]quinazolin-5(1H)-one Inhibitors Targeting Bromodomains within the Switch/Sucrose Nonfermenting Complex [pdf]Paper   Identification and Development of 2,3-Dihydropyrrolo[1,2-a]quinazolin-5(1H)-one Inhibitors Targeting Bromodomains within the Switch/Sucrose Nonfermenting Complex [link]Website   doi   link   bibtex   abstract  
Deciphering the true antiproliferative target of an MK2 activation inhibitor in glioblastoma. Brennan, P., E. Cell death & disease, 7(1): e2069. 2016.
Deciphering the true antiproliferative target of an MK2 activation inhibitor in glioblastoma [pdf]Paper   Deciphering the true antiproliferative target of an MK2 activation inhibitor in glioblastoma [link]Website   doi   link   bibtex  
Recent Progress in Histone Demethylase Inhibitors. McAllister, T., E.; England, K., S.; Hopkinson, R., J.; Brennan, P., E.; Kawamura, A.; and Schofield, C., J. Journal of Medicinal Chemistry, 59(4): 1308-1329. 2 2016.
doi   link   bibtex   abstract  
Development of Selective CBP/P300 Benzoxazepine Bromodomain Inhibitors. Popp, T., A.; Tallant, C.; Rogers, C.; Fedorov, O.; Brennan, P., E.; Müller, S.; Knapp, S.; and Bracher, F. Journal of Medicinal Chemistry, 59(19): 8889-8912. 9 2016.
doi   link   bibtex   abstract  
Exploring the role of water in molecular recognition: Predicting protein ligandability using a combinatorial search of surface hydration sites. Vukovic, S.; Brennan, P., E.; and Huggins, D., J. Journal of Physics Condensed Matter, 28(34): 344007. 7 2016.
doi   link   bibtex   abstract  
BET inhibition as a new strategy for the treatment of gastric cancer. Montenegro, R., C.; Clark, P., G.; Howarth, A.; Wan, X.; Ceroni, A.; Siejka, P.; Nunez-Alonso, G., A.; Monteiro, O.; Rogers, C.; Gamble, V.; Burbano, R.; Brennan, P., E.; Tallant, C.; Ebner, D.; Fedorov, O.; O'Neill, E.; Knapp, S.; Dixon, D.; and Müller, S. Oncotarget, 7(28): 43997-44012. 6 2016.
BET inhibition as a new strategy for the treatment of gastric cancer [link]Website   doi   link   bibtex   abstract  
Structure of the Human Protein Kinase ZAK in Complex with Vemurafenib. Mathea, S.; Abdul Azeez, K., R.; Salah, E.; Tallant, C.; Wolfreys, F.; Konietzny, R.; Fischer, R.; Lou, H., J.; Brennan, P., E.; Schnapp, G.; Pautsch, A.; Kessler, B., M.; Turk, B., E.; and Knapp, S. ACS Chemical Biology, 11(6): 1595-1602. 6 2016.
doi   link   bibtex   abstract  
Identification of a Chemical Probe for Family VIII Bromodomains through Optimization of a Fragment Hit. Gerstenberger, B., S.; Trzupek, J., D.; Tallant, C.; Fedorov, O.; Filippakopoulos, P.; Brennan, P., E.; Fedele, V.; Martin, S.; Picaud, S.; Rogers, C.; Parikh, M.; Taylor, A.; Samas, B.; O'Mahony, A.; Berg, E.; Pallares, G.; Torrey, A., D.; Treiber, D., K.; Samardjiev, I., J.; Nasipak, B., T.; Padilla-Benavides, T.; Wu, Q.; Imbalzano, A., N.; Nickerson, J., A.; Bunnage, M., E.; Müller, S.; Knapp, S.; and Owen, D., R. Journal of Medicinal Chemistry, 59(10): 4800-4811. 5 2016.
doi   link   bibtex   abstract  
Structural analysis of human KDM5B guides histone demethylase inhibitor development chem. comp. Johansson, C.; Velupillai, S.; Tumber, A.; Szykowska, A.; Hookway, E., S.; Nowak, R., P.; Strain-Damerell, C.; Gileadi, C.; Philpott, M.; Burgess-Brown, N.; Wu, N.; Kopec, J.; Nuzzi, A.; Steuber, H.; Egner, U.; Badock, V.; Munro, S.; LaThangue, N., B.; Westaway, S.; Brown, J.; Athanasou, N.; Prinjha, R.; Brennan, P., E.; and Oppermann, U. Nature Chemical Biology, 12(8): 78-80. 7 2016.
Structural analysis of human KDM5B guides histone demethylase inhibitor development chem. comp. [link]Website   doi   link   bibtex   abstract  
Development of chemical probes for the bromodomains of BRD7 and BRD9. Clark, P., G.; Dixon, D., J.; and Brennan, P., E. Drug Discovery Today: Technologies, 19: 73-80. 3 2016.
Development of chemical probes for the bromodomains of BRD7 and BRD9 [link]Website   doi   link   bibtex   abstract   1 download  
Chemical probes and inhibitors of bromodomains outside the BET family. Moustakim, M.; Clark, P., G.; Hay, D., A.; Dixon, D., J.; and Brennan, P., E. MedChemComm, 7(12): 2246-2264. 2016.
Chemical probes and inhibitors of bromodomains outside the BET family [pdf]Paper   Chemical probes and inhibitors of bromodomains outside the BET family [link]Website   doi   link   bibtex   abstract  
Promiscuous targeting of bromodomains by bromosporine identifies BET proteins as master regulators of primary transcription response in leukemia. Picaud, S.; Leonards, K.; Lambert, J., P.; Dovey, O.; Wells, C.; Fedorov, O.; Monteiro, O.; Fujisawa, T.; Wang, C., Y.; Lingard, H.; Tallant, C.; Nikbin, N.; Guetzoyan, L.; Ingham, R.; Ley, S., V.; Brennan, P.; Muller, S.; Samsonova, A.; Gingras, A., C.; Schwaller, J.; Vassiliou, G.; Knapp, S.; and Filippakopoulos, P. Science Advances, 2(10): e1600760. 10 2016.
Promiscuous targeting of bromodomains by bromosporine identifies BET proteins as master regulators of primary transcription response in leukemia [pdf]Paper   Promiscuous targeting of bromodomains by bromosporine identifies BET proteins as master regulators of primary transcription response in leukemia [link]Website   doi   link   bibtex   abstract  
Advances and challenges in understanding histone demethylase biology. Nowak, R., P.; Tumber, A.; Johansson, C.; Che, K., H.; Brennan, P.; Owen, D.; and Oppermann, U. 2016.
doi   link   bibtex   abstract  
A potent and selective inhibitor of a histone demethylase. England, K., S. Ph.D. Thesis, 2016.
link   bibtex  
  2015 (9)
The promise and peril of chemical probes. Arrowsmith, C., H.; Audia, J., E.; Austin, C.; Baell, J.; Bennett, J.; Blagg, J.; Bountra, C.; Brennan, P., E.; Brown, P., J.; Bunnage, M., E.; Buser-Doepner, C.; Campbell, R., M.; Carter, A., J.; Cohen, P.; Copeland, R., A.; Cravatt, B.; Dahlin, J., L.; Dhanak, D.; Edwards, A., M.; Frye, S., V.; Gray, N.; Grimshaw, C., E.; Hepworth, D.; Howe, T.; Huber, K., V.; Jin, J.; Knapp, S.; Kotz, J., D.; Kruger, R., G.; Lowe, D.; Mader, M., M.; Marsden, B.; Mueller-Fahrnow, A.; Müller, S.; O'Hagan, R., C.; Overington, J., P.; Owen, D., R.; Rosenberg, S., H.; Roth, B.; Ross, R.; Schapira, M.; Schreiber, S., L.; Shoichet, B.; Sundström, M.; Superti-Furga, G.; Taunton, J.; Toledo-Sherman, L.; Walpole, C.; Walters, M., A.; Willson, T., M.; Workman, P.; Young, R., N.; and Zuercher, W., J. Nature Chemical Biology, 11(8): 536-541. 2015.
The promise and peril of chemical probes [pdf]Paper   The promise and peril of chemical probes [pdf]Website   doi   link   bibtex   abstract  
CBP30, a selective CBP/p300 bromodomain inhibitor, suppresses human Th17 responses. Hammitzsch, A.; Tallant, C.; Fedorov, O.; O’Mahony, A.; Brennan, P., E.; Hay, D., A.; Martinez, F., O.; Al-Mossawi, M., H.; de Wit, J.; Vecellio, M.; Wells, C.; Wordsworth, P.; Müller, S.; Knapp, S.; and Bowness, P. Proceedings of the National Academy of Sciences, 112(34): 10768-10773. 2015.
CBP30, a selective CBP/p300 bromodomain inhibitor, suppresses human Th17 responses [link]Website   doi   link   bibtex   abstract  
Generation of a selective small molecule inhibitor of the CBP/p300 bromodomain for Leukemia therapy. Picaud, S.; Fedorov, O.; Thanasopoulou, A.; Leonards, K.; Jones, K.; Meier, J.; Olzscha, H.; Monteiro, O.; Martin, S.; Philpott, M.; Tumber, A.; Filippakopoulos, P.; Yapp, C.; Wells, C.; Che, K., H.; Bannister, A.; Robson, S.; Kumar, U.; Parr, N.; Lee, K.; Lugo, D.; Jeffrey, P.; Taylor, S.; Vecellio, M., L.; Bountra, C.; Brennan, P., E.; O'Mahony, A.; Velichko, S.; Muller, S.; Hay, D.; Daniels, D., L.; Urh, M.; La Thangue, N., B.; Kouzarides, T.; Prinjha, R.; Schwaller, J.; and Knapp, S. Cancer Research, 75(23): 5106-5119. 11 2015.
Generation of a selective small molecule inhibitor of the CBP/p300 bromodomain for Leukemia therapy [link]Website   doi   link   bibtex   abstract  
Selective targeting of the BRG/PB1 bromodomains impairs embryonic and trophoblast stem cell maintenance. Fedorov, O.; Castex, J.; Tallant, C.; Owen, D., R.; Martin, S.; Aldeghi, M.; Monteiro, O.; Filippakopoulos, P.; Picaud, S.; Trzupek, J., D.; Gerstenberger, B., S.; Bountra, C.; Willmann, D.; Wells, C.; Philpott, M.; Rogers, C.; Biggin, P., C.; Brennan, P., E.; Bunnage, M., E.; Schüle, R.; Günther, T.; Knapp, S.; and Müller, S. Science Advances, 1(10): e1500723. 11 2015.
Selective targeting of the BRG/PB1 bromodomains impairs embryonic and trophoblast stem cell maintenance [pdf]Paper   Selective targeting of the BRG/PB1 bromodomains impairs embryonic and trophoblast stem cell maintenance [link]Website   doi   link   bibtex   abstract  
Inflammatory Signaling by NOD-RIPK2 Is Inhibited by Clinically Relevant Type II Kinase Inhibitors. Canning, P.; Ruan, Q.; Schwerd, T.; Hrdinka, M.; Maki, J., L.; Saleh, D.; Suebsuwong, C.; Ray, S.; Brennan, P., E.; Cuny, G., D.; Uhlig, H., H.; Gyrd-Hansen, M.; Degterev, A.; and Bullock, A., N. Chemistry and Biology, 22(9): 1174-1184. 9 2015.
Inflammatory Signaling by NOD-RIPK2 Is Inhibited by Clinically Relevant Type II Kinase Inhibitors [pdf]Paper   Inflammatory Signaling by NOD-RIPK2 Is Inhibited by Clinically Relevant Type II Kinase Inhibitors [link]Website   doi   link   bibtex   abstract  
K2P channel gating mechanisms revealed by structures of TREK-2 and a complex with Prozac. Dong, Y., Y.; Pike, A., C.; Mackenzie, A.; McClenaghan, C.; Aryal, P.; Dong, L.; Quigley, A.; Grieben, M.; Goubin, S.; Mukhopadhyay, S.; Ruda, G., F.; Clausen, M., V.; Cao, L.; Brennan, P., E.; Burgess-Brown, N., A.; Sansom, M., S.; Tucker, S., J.; and Carpenter, E., P. Science, 347(6227): 1256-1259. 3 2015.
K2P channel gating mechanisms revealed by structures of TREK-2 and a complex with Prozac [link]Website   doi   link   bibtex   abstract  
Betti reaction enables efficient synthesis of 8-hydroxyquinoline inhibitors of 2-oxoglutarate oxygenases. Thinnes, C., C.; Tumber, A.; Yapp, C.; Scozzafava, G.; Yeh, T.; Chan, M., C.; Tran, T., A.; Hsu, K.; Tarhonskaya, H.; Walport, L., J.; Wilkins, S., E.; Martinez, E., D.; Müller, S.; Pugh, C., W.; Ratcliffe, P., J.; Brennan, P., E.; Kawamura, A.; and Schofield, C., J. Chemical Communications, 51(84): 15458-15461. 10 2015.
doi   link   bibtex   abstract  
Design and synthesis of potent and selective inhibitors of BRD7 and BRD9 bromodomains. Hay, D., A.; Rogers, C., M.; Fedorov, O.; Tallant, C.; Martin, S.; Monteiro, O., P.; Müller, S.; Knapp, S.; Schofield, C., J.; and Brennan, P., E. MedChemComm, 6(7): 1381-1386. 2015.
doi   link   bibtex   abstract  
LP99: Discovery and synthesis of the first selective BRD7/9 bromodomain inhibitor. Clark, P., G.; Vieira, L., C.; Tallant, C.; Fedorov, O.; Singleton, D., C.; Rogers, C., M.; Monteiro, O., P.; Bennett, J., M.; Baronio, R.; Müller, S.; Daniels, D., L.; Méndez, J.; Knapp, S.; Brennan, P., E.; and Dixon, D., J. Angewandte Chemie - International Edition, 54(21): 6217-6221. 2015.
doi   link   bibtex   abstract  
  2014 (7)
Optimisation of a triazolopyridine based histone demethylase inhibitor yields a potent and selective KDM2A (FBXL11) inhibitor. England, K., S.; Tumber, A.; Krojer, T.; Scozzafava, G.; Ng, S., S.; Daniel, M.; Szykowska, A.; Che, K.; Von Delft, F.; Burgess-Brown, N., A.; Kawamura, A.; Schofield, C., J.; and Brennan, P., E. MedChemComm, 5(12): 1879-1886. 2014.
Optimisation of a triazolopyridine based histone demethylase inhibitor yields a potent and selective KDM2A (FBXL11) inhibitor [pdf]Paper   Optimisation of a triazolopyridine based histone demethylase inhibitor yields a potent and selective KDM2A (FBXL11) inhibitor [link]Website   doi   link   bibtex   abstract  
Multiparameter optimization in CNS drug discovery: Design of pyrimido[4,5-d]azepines as potent 5-hydroxytryptamine 2C (5-HT2C) receptor agonists with exquisite functional selectivity over 5-HT2A and 5-HT2B receptors. Storer, R., I.; Brennan, P., E.; Brown, A., D.; Bungay, P., J.; Conlon, K., M.; Corbett, M., S.; Depianta, R., P.; Fish, P., V.; Heifetz, A.; Ho, D., K., H.; Jessiman, A., S.; McMurray, G.; De Oliveira, C., A., F.; Roberts, L., R.; Root, J., A.; Shanmugasundaram, V.; Shapiro, M., J.; Skerten, M.; Westbrook, D.; Wheeler, S.; Whitlock, G., A.; and Wright, J. Journal of Medicinal Chemistry, 57(12): 5258-5269. 2014.
Multiparameter optimization in CNS drug discovery: Design of pyrimido[4,5-d]azepines as potent 5-hydroxytryptamine 2C (5-HT2C) receptor agonists with exquisite functional selectivity over 5-HT2A and 5-HT2B receptors [pdf]Paper   Multiparameter optimization in CNS drug discovery: Design of pyrimido[4,5-d]azepines as potent 5-hydroxytryptamine 2C (5-HT2C) receptor agonists with exquisite functional selectivity over 5-HT2A and 5-HT2B receptors [link]Website   doi   link   bibtex   abstract  
A series of potent crebbp bromodomain ligands reveals an induced-fit pocket stabilized by a cation-π interaction. Rooney, T., P.; Filippakopoulos, P.; Fedorov, O.; Picaud, S.; Cortopassi, W., A.; Hay, D., A.; Martin, S.; Tumber, A.; Rogers, C., M.; Philpott, M.; Wang, M.; Thompson, A., L.; Heightman, T., D.; Pryde, D., C.; Cook, A.; Paton, R., S.; Müller, S.; Knapp, S.; Brennan, P., E.; and Conway, S., J. Angewandte Chemie - International Edition, 53(24): 6126-6130. 2014.
A series of potent crebbp bromodomain ligands reveals an induced-fit pocket stabilized by a cation-π interaction [pdf]Paper   doi   link   bibtex   abstract  
[1,2,4]Triazolo[4,3-a]phthalazines: Inhibitors of diverse bromodomains. Fedorov, O.; Lingard, H.; Wells, C.; Monteiro, O., P.; Picaud, S.; Keates, T.; Yapp, C.; Philpott, M.; Martin, S., J.; Felletar, I.; Marsden, B., D.; Filippakopoulos, P.; Müller, S.; Knapp, S.; and Brennan, P., E. Journal of Medicinal Chemistry, 57(2): 462-476. 2014.
[1,2,4]Triazolo[4,3-a]phthalazines: Inhibitors of diverse bromodomains [pdf]Paper   [1,2,4]Triazolo[4,3-a]phthalazines: Inhibitors of diverse bromodomains [pdf]Website   doi   link   bibtex   abstract  
Machine-assisted synthesis of modulators of the histone reader BRD9 using flow methods of chemistry and frontal affinity chromatography. Guetzoyan, L.; Ingham, R., J.; Nikbin, N.; Rossignol, J.; Wolling, M.; Baumert, M.; Burgess-Brown, N., A.; Strain-Damerell, C., M.; Shrestha, L.; Brennan, P., E.; Fedorov, O.; Knapp, S.; and Ley, S., V. MedChemComm, 5(4): 540-546. 2014.
Machine-assisted synthesis of modulators of the histone reader BRD9 using flow methods of chemistry and frontal affinity chromatography [link]Website   doi   link   bibtex   abstract  
Discovery and optimization of small-molecule ligands for the CBP/p300 bromodomains. Hay, D., A.; Fedorov, O.; Martin, S.; Singleton, D., C.; Tallant, C.; Wells, C.; Picaud, S.; Philpott, M.; Monteiro, O., P.; Rogers, C., M.; Conway, S., J.; Rooney, T., P.; Tumber, A.; Yapp, C.; Filippakopoulos, P.; Bunnage, M., E.; Müller, S.; Knapp, S.; Schofield, C., J.; and Brennan, P., E. Journal of the American Chemical Society, 136(26): 9308-9319. 2014.
Discovery and optimization of small-molecule ligands for the CBP/p300 bromodomains [pdf]Paper   Discovery and optimization of small-molecule ligands for the CBP/p300 bromodomains [link]Website   doi   link   bibtex   abstract  
Optimizing in vivo probes for the BET bromodomains. Jennings, L., E.; Hewings, D., S.; Humphreys, P., G.; Brennan, P., E.; and Conway, S., J. In Abstracts of Papers of the American Chemical Society, volume 248, 8 2014.
Optimizing in vivo probes for the BET bromodomains [link]Website   link   bibtex  
  2013 (8)
5-Carboxy-8-hydroxyquinoline is a broad spectrum 2-oxoglutarate oxygenase inhibitor which causes iron translocation. Hopkinson, R., J.; Tumber, A.; Yapp, C.; Chowdhury, R.; Aik, W., S.; Che, K., H.; Li, X., S.; Kristensen, J., B.; King, O., N.; Chan, M., C.; Yeoh, K., K.; Choi, H.; Walport, L., J.; Thinnes, C., C.; Bush, J., T.; Lejeune, C.; Rydzik, A., M.; Rose, N., R.; Bagg, E., A.; McDonough, M., A.; Krojer, T., J.; Yue, W., W.; Ng, S., S.; Olsen, L.; Brennan, P., E.; Oppermann, U.; Müller, S.; Klose, R., J.; Ratcliffe, P., J.; Schofield, C., J.; and Kawamura, A. Chemical Science, 4(8): 3110-3117. 2013.
5-Carboxy-8-hydroxyquinoline is a broad spectrum 2-oxoglutarate oxygenase inhibitor which causes iron translocation [pdf]Paper   5-Carboxy-8-hydroxyquinoline is a broad spectrum 2-oxoglutarate oxygenase inhibitor which causes iron translocation [link]Website   doi   link   bibtex   abstract   1 download  
PFI-1, a highly selective protein interaction inhibitor, targeting BET bromodomains. Picaud, S.; Da Costa, D.; Thanasopoulou, A.; Filippakopoulos, P.; Fish, P., V.; Philpott, M.; Fedorov, O.; Brennan, P.; Bunnage, M., E.; Owen, D., R.; Bradner, J., E.; Taniere, P.; O'Sullivan, B.; Müller, S.; Schwaller, J.; Stankovic, T.; and Knapp, S. Cancer Research, 73(11): 3336-3346. 2013.
PFI-1, a highly selective protein interaction inhibitor, targeting BET bromodomains [pdf]Paper   PFI-1, a highly selective protein interaction inhibitor, targeting BET bromodomains [pdf]Website   doi   link   bibtex   abstract  
RVX-208, an inhibitor of BET transcriptional regulators with selectivity for the second bromodomain. Picaud, S.; Wells, C.; Felletar, I.; Brotherton, D.; Martin, S.; Savitsky, P.; Diez-Dacal, B.; Philpott, M.; Bountra, C.; Lingard, H.; Fedorov, O.; Muller, S.; Brennan, P., E.; Knapp, S.; and Filippakopoulos, P. Proceedings of the National Academy of Sciences, 110(49): 19754-19759. 2013.
RVX-208, an inhibitor of BET transcriptional regulators with selectivity for the second bromodomain [pdf]Paper   RVX-208, an inhibitor of BET transcriptional regulators with selectivity for the second bromodomain [link]Website   doi   link   bibtex   abstract  
Fragment-based hit identification: thinking in 3D. Morley, A., D.; Pugliese, A.; Birchall, K.; Bower, J.; Brennan, P.; Brown, N.; Chapman, T.; Drysdale, M.; Gilbert, I., H.; Hoelder, S.; Jordan, A.; Ley, S., V.; Merritt, A.; Miller, D.; Swarbrick, M., E.; and Wyatt, P., G. Drug discovery today, 18(23-24): 1221-7. 2013.
Fragment-based hit identification: thinking in 3D. [link]Website   doi   link   bibtex   abstract  
Optimization of 3,5-dimethylisoxazole derivatives as potent bromodomain ligands. Hewings, D., S.; Fedorov, O.; Filippakopoulos, P.; Martin, S.; Picaud, S.; Tumber, A.; Wells, C.; Olcina, M., M.; Freeman, K.; Gill, A.; Ritchie, A., J.; Sheppard, D., W.; Russell, A., J.; Hammond, E., M.; Knapp, S.; Brennan, P., E.; and Conway, S., J. Journal of Medicinal Chemistry, 56(8): 3217-3227. 2013.
Optimization of 3,5-dimethylisoxazole derivatives as potent bromodomain ligands [pdf]Paper   Optimization of 3,5-dimethylisoxazole derivatives as potent bromodomain ligands [link]Website   doi   link   bibtex   abstract  
The design and synthesis of 5- and 6-isoxazolylbenzimidazoles as selective inhibitors of the BET bromodomains. Hay, D.; Fedorov, O.; Filippakopoulos, P.; Martin, S.; Philpott, M.; Picaud, S.; Hewings, D., S.; Uttakar, S.; Heightman, T., D.; Conway, S., J.; Knapp, S.; and Brennan, P., E. MedChemComm, 4(1): 140-144. 2013.
The design and synthesis of 5- and 6-isoxazolylbenzimidazoles as selective inhibitors of the BET bromodomains [pdf]Paper   The design and synthesis of 5- and 6-isoxazolylbenzimidazoles as selective inhibitors of the BET bromodomains [link]Website   doi   link   bibtex   abstract  
Chemical probes for bromodomains outside the BET family. Brennan, P., E.; Martin, S., J.; Monteiro, O.; Fedorov, O.; Knapp, S.; Hay, D.; Wells, C.; Filippakopoulos, P.; Picaud, S.; Muller-Knapp, S.; Keates, T.; Yapp, C.; Philpott, M.; Schofield, C.; Burgess-Brown, N.; Shrestha, L.; and Strain-Damerell, C. In Abstracts of Papers of the American Chemical Society, volume 246, 9 2013.
Chemical probes for bromodomains outside the BET family [link]Website   link   bibtex  
PFI-1, a highly selective protein interaction inhibitor, targeting BET bromodomains. Picaud, S.; Da Costa, D.; Thanasopoulou, A.; Filippakopoulos, P.; Fish, P., V.; Philpott, M.; Fedorov, O.; Brennan, P.; Bunnage, M., E.; Owen, D., R.; Bradner, J., E.; Taniere, P.; O'Sullivan, B.; Müller, S.; Schwaller, J.; Stankovic, T.; and Knapp, S. Cancer Research, 73(11): 3336-3346. 2013.
doi   link   bibtex   abstract  
  2012 (9)
Progress in the Development and Application of Small Molecule Inhibitors of Bromodomain–Acetyl-lysine Interactions. Hewings, D., S.; Rooney, T., P., C.; Jennings, L., E.; Hay, D., A.; Schofield, C., J.; Brennan, P., E.; Knapp, S.; and Conway, S., J. Journal of Medicinal Chemistry, 55(22): 9393-9413. 2012.
Progress in the Development and Application of Small Molecule Inhibitors of Bromodomain–Acetyl-lysine Interactions [pdf]Paper   Progress in the Development and Application of Small Molecule Inhibitors of Bromodomain–Acetyl-lysine Interactions [link]Website   doi   link   bibtex   abstract  
The therapeutic potential of acetyl-lysine and methyl-lysine effector domains. Brennan, P.; Filippakopoulos, P.; and Knapp, S. Drug Discovery Today: Therapeutic Strategies, 9(2-3): e101-e110. 2012.
The therapeutic potential of acetyl-lysine and methyl-lysine effector domains [pdf]Paper   The therapeutic potential of acetyl-lysine and methyl-lysine effector domains [link]Website   doi   link   bibtex   abstract  
Plant growth regulator daminozide is a selective inhibitor of human KDM2/7 histone demethylases. Rose, N., R.; Woon, E., C., Y.; Tumber, A.; Walport, L., J.; Chowdhury, R.; Li, X., S.; King, O., N., F.; Lejeune, C.; Ng, S., S.; Krojer, T.; Chan, M., C.; Rydzik, A., M.; Hopkinson, R., J.; Che, K., H.; Daniel, M.; Strain-Damerell, C.; Gileadi, C.; Kochan, G.; Leung, I., K., H.; Dunford, J.; Yeoh, K., K.; Ratcliffe, P., J.; Burgess-Brown, N.; Von Delft, F.; Muller, S.; Marsden, B.; Brennan, P., E.; McDonough, M., A.; Oppermann, U.; Klose, R., J.; Schofield, C., J.; and Kawamura, A. Journal of Medicinal Chemistry, 55(14): 6639-6643. 2012.
Plant growth regulator daminozide is a selective inhibitor of human KDM2/7 histone demethylases [pdf]Paper   Plant growth regulator daminozide is a selective inhibitor of human KDM2/7 histone demethylases [link]Website   doi   link   bibtex   abstract  
Identification of a chemical probe for bromo and extra C-terminal bromodomain inhibition through optimization of a fragment-derived hit. Fish, P., V.; Filippakopoulos, P.; Bish, G.; Brennan, P., E.; Bunnage, M., E.; Cook, A., S.; Federov, O.; Gerstenberger, B., S.; Jones, H.; Knapp, S.; Marsden, B.; Nocka, K.; Owen, D., R.; Philpott, M.; Picaud, S.; Primiano, M., J.; Ralph, M., J.; Sciammetta, N.; and Trzupek, J., D. Journal of Medicinal Chemistry, 55(22): 9831-9837. 2012.
Identification of a chemical probe for bromo and extra C-terminal bromodomain inhibition through optimization of a fragment-derived hit [pdf]Paper   Identification of a chemical probe for bromo and extra C-terminal bromodomain inhibition through optimization of a fragment-derived hit [link]Website   doi   link   bibtex   abstract  
The Role of Protein Structural Analysis in the Next Generation Sequencing Era. Yue, W., W.; Froese, D., S.; and Brennan, P., E. Volume 336 . Topics in current chemistry, pages 1-32. Springer Berlin / Heidelberg, 2012.
Topics in current chemistry [link]Website   doi   link   bibtex   abstract  
Developing chemical probes for the BET bromodomains. Hewings, D., S.; Wang, M.; Philpott, M.; Fedorov, O.; Uttarkar, S.; Filippakopoulos, P.; Picaud, S.; Vuppusetty, C.; Marsden, B.; Heightman, T., D.; Knapp, S.; Brennan, P.; and Conway, S., J. In Abstracts of Papers of the American Chemical Society, volume 243, 3 2012.
Developing chemical probes for the BET bromodomains [link]Website   link   bibtex  
3,5-Dimethylisoxazoles inhibit the bromodomain-histone protein-protein interaction. Hewings, D., S.; Wang, M.; Philpott, M.; Fedorov, O.; Uttarkar, S.; Filippakopoulos, P.; Picaud, S.; Vuppusetty, C.; Marsden, B.; Heightman, T., D.; Knapp, S.; Brennan, P.; and Conway, S., J. In ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, volume 243, 3 2012.
3,5-Dimethylisoxazoles inhibit the bromodomain-histone protein-protein interaction [link]Website   link   bibtex  
Developing small molecule inhibitors of the CREBBP bromodomain-histone interaction. Rooney, T., P., C.; Fedorov, O.; Filippakopoulos, P.; Wang, M.; Philpott, M.; Cook, A.; Heightman, T., D.; Knapp, S.; Pryde, D.; Brennan, P., E.; and Conway, S., J. In Abstracts of Papers of the American Chemical Society, volume 244, 8 2012.
Developing small molecule inhibitors of the CREBBP bromodomain-histone interaction [link]Website   link   bibtex  
The therapeutic potential of acetyl-lysine and methyl-lysine effector domains. Brennan, P.; Filippakopoulos, P.; and Knapp, S. Drug Discovery Today: Therapeutic Strategies, 9(2-3). 9 2012.
doi   link   bibtex   abstract  
  2011 (3)
A tandem asymmetric synthesis approach for the efficient preparation of enantiomerically pure 9-(hydroxyethyl) anthracene. Ball, J., C.; Brennan, P.; Elsunaki, T., M.; Jaunet, A.; and Jones, S. Tetrahedron Asymmetry, 22(3): 253-255. 2011.
A tandem asymmetric synthesis approach for the efficient preparation of enantiomerically pure 9-(hydroxyethyl) anthracene [pdf]Paper   A tandem asymmetric synthesis approach for the efficient preparation of enantiomerically pure 9-(hydroxyethyl) anthracene [link]Website   doi   link   bibtex   abstract  
A general and mild two-step procedure for the synthesis of aryl and heteroaryl sulfonamides from the corresponding iodides. Ho, D., K., H.; Chan, L.; Hooper, A.; and Brennan, P., E. Tetrahedron Letters, 52(7): 820-823. 2011.
A general and mild two-step procedure for the synthesis of aryl and heteroaryl sulfonamides from the corresponding iodides [pdf]Paper   A general and mild two-step procedure for the synthesis of aryl and heteroaryl sulfonamides from the corresponding iodides [link]Website   doi   link   bibtex   abstract  
Pyrimido[4,5-d]azepines as potent and selective 5-HT2Creceptor agonists: Design, synthesis, and evaluation of PF-3246799 as a treatment for urinary incontinence. Andrews, M., D.; Fish, P., V.; Blagg, J.; Brabham, T., K.; Brennan, P., E.; Bridgeland, A.; Brown, A., D.; Bungay, P., J.; Conlon, K., M.; Edmunds, N., J.; Af Forselles, K.; Gibbons, C., P.; Green, M., P.; Hanton, G.; Holbrook, M.; Jessiman, A., S.; McIntosh, K.; McMurray, G.; Nichols, C., L.; Root, J., A.; Storer, R., I.; Sutton, M., R.; Ward, R., V.; Westbrook, D.; and Whitlock, G., A. Bioorganic and Medicinal Chemistry Letters, 21(9): 2715-2720. 2011.
doi   link   bibtex   abstract  
  2010 (1)
Catalytic and chaperone-like functions in an intrinsically disordered protein associated with desiccation tolerance. Chakrabortee, S.; Meersman, F.; Kaminski Schierle, G., S.; Bertoncini, C., W.; McGee, B.; Kaminski, C., F.; and Tunnacliffe, A. Proceedings of the National Academy of Sciences, 107(37): 16084-16089. 2010.
Catalytic and chaperone-like functions in an intrinsically disordered protein associated with desiccation tolerance [pdf]Paper   Catalytic and chaperone-like functions in an intrinsically disordered protein associated with desiccation tolerance [link]Website   doi   link   bibtex   abstract  
  2009 (3)
Potent and selective α1Aadrenoceptor partial agonists-Novel imidazole frameworks. Whitlock, G., A.; Brennan, P., E.; Roberts, L., R.; and Stobie, A. Bioorganic and Medicinal Chemistry Letters, 19(11): 3118-3121. 2009.
Potent and selective α1Aadrenoceptor partial agonists-Novel imidazole frameworks [pdf]Paper   Potent and selective α1Aadrenoceptor partial agonists-Novel imidazole frameworks [link]Website   doi   link   bibtex   abstract  
Discovery of a novel azepine series of potent and selective 5-HT2Cagonists as potential treatments for urinary incontinence. Brennan, P., E.; Whitlock, G., A.; Ho, D., K., H.; Conlon, K.; and McMurray, G. Bioorganic and Medicinal Chemistry Letters, 19(17): 4999-5003. 2009.
Discovery of a novel azepine series of potent and selective 5-HT2Cagonists as potential treatments for urinary incontinence [pdf]Paper   Discovery of a novel azepine series of potent and selective 5-HT2Cagonists as potential treatments for urinary incontinence [link]Website   doi   link   bibtex   abstract  
Total Synthesis of rapamycin. Ley, S., V.; Tackett, M., N.; Maddess, M., L.; Anderson, J., C.; Brennan, P., E.; Cappi, M., W.; Heer, J., P.; Helgen, C.; Kori, M.; Kouklovsky, C.; Marsden, S., P.; Norman, J.; Osborn, D., P.; Palomero, M., Á.; Pavey, J., B.; Pinel, C.; Robinson, L., A.; Schnaubelt, J.; Scott, J., S.; Spilling, C., D.; Watanabe, H.; Wesson, K., E.; and Willis, M., C. Chemistry - A European Journal, 15(12): 2874-2914. 2009.
Total Synthesis of rapamycin [pdf]Paper   Total Synthesis of rapamycin [link]Website   doi   link   bibtex   abstract  
  2008 (1)
Preparation of pyrimido[4,5-d]azepine derivatives as 5-HT2C agonists. Andrews, M., D.; Blagg, J.; Brennan, P., E.; Fish, P., V.; Roberts, L., R.; Storer, R., I.; and Whitlock, G., A. 2008.
link   bibtex   abstract  
  2007 (1)
Total synthesis of rapamycin. Maddess, M., L.; Tackett, M., N.; Watanabe, H.; Brennan, P., E.; Spilling, C., D.; Scott, J., S.; Osborn, D., P.; and Ley, S., V. Angewandte Chemie - International Edition, 46(4): 591-597. 2007.
Total synthesis of rapamycin [pdf]Paper   Total synthesis of rapamycin [link]Website   doi   link   bibtex   abstract   1 download  
  2006 (1)
Aminopyrimidine compounds as polo-like kinase 1 inhibitors and their preparation, pharmaceutical compositions and use for treatment of cancer. Smith, A., L.; Brennan, P., E.; Demorin, F., F.; Liu, G.; Paras, N., A.; and Retz, D., M. 2006.
link   bibtex   abstract  
  2003 (3)
Studies toward a total synthesis of bengazole A utilizing BDA-protected building blocks. Balskus, E., P.; Brennan, P., E.; and Ley, S., V. In Abstracts of Papers, 225th ACS National Meeting, New Orleans, LA, United States, March 23-27, 2003, pages ORGN-418, 2003.
link   bibtex   abstract  
Synthesis of carbohydrate derivatives using solid-phase work-up and scavenging techniques. MacCoss, R., N.; Brennan, P., E.; and Ley, S., V. Organic and Biomolecular Chemistry, 1(12): 2029-2031. 2003.
Synthesis of carbohydrate derivatives using solid-phase work-up and scavenging techniques [pdf]Paper   Synthesis of carbohydrate derivatives using solid-phase work-up and scavenging techniques [link]Website   doi   link   bibtex   abstract  
Palladium-containing perovskites: recoverable and reuseable catalysts for Suzuki couplingsElectronic supplementary information (ESI) available: experimental details. See http://www.rsc.org/suppdata/cc/b3/b308465e/. Smith, M., D.; Stepan, A., F.; Ramarao, C.; Brennan, P., E.; and Ley, S., V. Chemical Communications, 3(21): 2652. 2003.
Palladium-containing perovskites: recoverable and reuseable catalysts for Suzuki couplingsElectronic supplementary information (ESI) available: experimental details. See http://www.rsc.org/suppdata/cc/b3/b308465e/ [pdf]Paper   Palladium-containing perovskites: recoverable and reuseable catalysts for Suzuki couplingsElectronic supplementary information (ESI) available: experimental details. See http://www.rsc.org/suppdata/cc/b3/b308465e/ [link]Website   doi   link   bibtex   abstract  
  2002 (1)
Combinatorial synthetic design. Solution and polymer-supported synthesis of heterocycles via intramolecular aza Diels-Alder and imino alcohol cyclizations. Spaller, M., R.; Thielemann, W., T.; Brennan, P., E.; and Bartlett, P., A. Journal of Combinatorial Chemistry, 4(5): 516-522. 2002.
Combinatorial synthetic design. Solution and polymer-supported synthesis of heterocycles via intramolecular aza Diels-Alder and imino alcohol cyclizations [pdf]Paper   Combinatorial synthetic design. Solution and polymer-supported synthesis of heterocycles via intramolecular aza Diels-Alder and imino alcohol cyclizations [link]Website   doi   link   bibtex   abstract  
  2001 (1)
New catalysts for olefin metathesis. Brennan, P., E.; and Ley, S., V. Chemtracts: Organic Chemistry, 14(2): 88-93. 2001.
link   bibtex   abstract  
  2000 (1)
Phosphinate Inhibitors of Peptidoglycan Biosynthesis: Development of of a New Ring System for Combinatorial Chemistry. Brennan, P., E. University of California, Berkeley, 2000.
Phosphinate Inhibitors of Peptidoglycan Biosynthesis: Development of of a New Ring System for Combinatorial Chemistry [link]Website   link   bibtex  
  1999 (1)
Application of the intramolecular azomethine imine cycloaddition to the construction of a novel, orthogonally protected spirodiamino acid scaffold. Dolle, R., E.; Barden, M., C.; Brennan, P., E.; Ahmed, G.; Tran, V.; and Ho, D., M. Tetrahedron Letters, 40(15): 2907-2908. 1999.
Application of the intramolecular azomethine imine cycloaddition to the construction of a novel, orthogonally protected spirodiamino acid scaffold [pdf]Paper   Application of the intramolecular azomethine imine cycloaddition to the construction of a novel, orthogonally protected spirodiamino acid scaffold [link]Website   doi   link   bibtex   abstract   1 download  

Currently experiencing technical difficulties, back soon!